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Self-organization is a process, in which an internal system
spontaneously opens a new route to increase system com-
plexity without being guided by an external source. The con-
cept of self-organization is central to the understanding of
living organisms, biominerals, and new supramolecular ma-
terials.'>! For chemistry, self-organizing equilibrium condi-
tions can be controlled by changing a few critical factors
(concentration, template, pH, temperature, solvent system,
etc.) to generate desirable compounds.**! However, these
explorations seem not to be completely applied in a few par-
ticular supramolecular systems. Inspired by biology, to con-
struct a high-order architecture from individual building
components, various driving
forces may competitively pre-
dominate at certain stages of
the self-assembly process.>* A
subtle
balance may control and tune
the materials growth delicately.

cesses can be operative if the
building components are suffi-
cient and in close proximity,
under suitable conditions. If
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the supply of building units is depleted or reduced, the origi-
nal equilibrium conditions will change, and a new self-or-
ganization process will take place. These intriguing phenom-
ena of self-organization are triggered by an internal stimulus
and seem to be easily understood in biology,”! but the phe-
nomena has not been addressed in the synthesis system of
metal-organic framework (MOF) materials.©

As part of our ongoing efforts in the design and synthesis
of functional crystalline materials, """ we report herein on
an intriguing supramolecular system that involves a distinct
self-organization process, in which the product structures
adapt to autonomous dynamic changes in the ratio of build-
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Scheme 1. Self-organization of 1 and 2 in a one-pot supramolecular synthesis system.

ing components at ambient temperature. As shown in
Scheme 1, two 3D metal-organic framework materials, of
{K,[Cos(btec),(H,0),]-6 H,0}, (1, btec=benzene-1,2,4,5-tet-
racarboxylate) with a rare scu net and {K,[Co(btec)]-7H,0},
(2) with a pts net, are formed in the simple one-pot reaction
system. For the initially designed self-assembly system, a so-
lution of CoCl,-6H,0 (0.40 mmol) in ethanol (5mL) was
carefully layered on top of a bilayer solution comprised of a
solution of K,btec (0.20 mmol) in water (SmL) on the
bottom and a buffer solvent of THF on the top at room tem-
perature. Scarlet crystals of 1 were generated about within
the first three days, and, after the reaction system was al-
lowed to stand for a few more days, violet crystals of 2
formed gradually. Surprisingly, although the reactant ratio
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was changed slightly, both products always appeared clearly
in the system (details see the Supporting Information).

The most reasonable explanation for this unique adaption
phenomenon is that the K/Co" ratio can automatically and
dynamically change during the self-assembly of 1 and 2
(Figure 1). The production of {K,[Cos,(btec),(H,0),]-6H,0},
(1) consumes more Co" atoms (3 units) than K' atoms (2
units), thus, the K'Co" ratio in the solution gradually in-
creases as 1 is formed. At a distinct critical point, the self-or-
ganization direction autonomously changes in favor of the
generation of {K,[Co(btec)]-7H,0}, (2), because less Co"
atoms (1 unit) are consumed than K' atoms (2 units). Fortu-
nately, the colors of 1 (scarlet) and 2 (violet) are so different
that this intriguing phenomenon can be detected by the
naked eye.
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Figure 1. Structural adaptation of 1 (left) and 2 (right) upon the dynamic adjustment of the Co"/K' concentra-
tion ratio. For structures of 1 and 2, Co=pink, C=white, O =sea-green, H=yellow, K=blue.

To identify the driving forces and controlling factors in-
volved in the self-assembly process in detail, a series of ex-
periments on the dynamic adjustment of the K'/Co" ratio to
modify the equilibrium conditions in this system were per-
formed (Table S1 in the Supporting Information). Different
amounts of KCl were added to the self-assembly systems,
while holding the CoCl,-6 H,O/K,btec ratio fixed, at ambient
temperature. As expected, tuning the KYCo" concentration
ratio by adding KCI, resulted in a controllable structural
self-adaptation in the cobalt(Il)-organic frameworks. The
yield of 2 increased with increasing amounts of added KCI
and the yield of 1 decreased in a corresponding manner.
That is, the higher the concentration of K' ions, the stronger
tendency to generate 2, and the weaker probability of pro-
ducing 1. In an extreme case, when an especially high or low
K'/Co" ratio was used, either 1 or 2 was formed exclusively.
The generation of 1, results in a higher K'/Co" ratio in the
solution and a stronger tendency to form 2. Conceptually,
potassium ion seems to be silent in the preparation of MOF
materials because of its weak coordination interactions.
However, it is alive and plays a critical role now. To our
knowledge, this kind of phenomenon concerning time-evolv-
ing self-organization and autonomous structural adaptation
has scarcely been highlighted in the MOF synthesis
system.!™®
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A single-crystal X-ray diffraction analysis of 1 reveals that
there are two crystallographic distinct Co™ centers. Both
centers adopt a distorted trans-Co(OCO),(OH,), octahedral
geometry; whereas, the btec ligand exists in a ug-bridging
mode with two monodentate carboxylate groups at the
para-positions and the other two carboxylate groups in a
syn,syn-bridging bidentate mode (Figure S1). A trinuclear
cluster with the formula [Co;(O,CR)s(H,0),] is observed. In
this cluster, the three Co ions are linear, and a total of eight
carboxylate groups and two water molecules bridged the Co
ions (Figure 2a). Each btec ligand acts as a four-connecting
node in a distorted square planar geometry and coordinates
to four tricobalt clusters that serve as eight-connecting cubi-
cal vertices. To understand the framework topology in 1, the
motif of the tricobalt cluster connected to eight btec linkers
is represented by a box con-
nected with four squares
through eight simple bars (Fig-
ure 2a). The framework of 1
results in a rare (4,8)-connect-
ed net with the Schléfli symbol
S of {(4*.6%),(4'°.6'%)} and has the
topology of a scu net (square
planar and cubical vertices).®!

Except for a couple of inor-
ganic salt,’*® such as PoCl,,
metal-organic complexes with
2 the scu-net topology are ex-
tremely rare.” Remarkably,
like the rare (4,8)-connected
metal-organic replicas of fluo-
rite with the flu net which con-
tain tetrahedral and cubical vertices,'” compound 1 repre-
sents the first extended metal-organic replicate of PoCl,
with the scu net containing an eight-connecting polynuclear
cluster and a large four-connecting organic ligand to date.
Furthermore, this unique tricobalt cluster is stabilized by
strong hydrogen-bonding interactions between the hydrogen
atoms of bridging water molecules and the noncoordinated
carboxylate oxygen atoms (H--O=1.919(2), O-+O=
2.624(2) A, O—H--0=153.87(1)°). The 3D network contains
rhombic channels, with diagonal dimensions of 11.90x
15.74 A% along the ¢ axis, where the potassium ions and
guest water molecules reside to form a K'-water rod of
{(H,0),(K4(H,0),)},, (Figure S5a).

Compound 2 is an isostructure of a Zn species in our
early papers, but the similar dynamic self-organization pro-
cess was not observed owing to coordinating natures of dif-
ferent metal centers.”” The btec ligand also serves as an ex-
panded square planar node that connected to four Co" cen-
ters. Each Co" center is bound to four monodentate carbox-
ylate groups in a distorted tetrahedral geometry. The overall
3D porous framework of 2 adopts a (4,4)-connected net
with the Schlifli symbol {4%.8%} and has the topology of a pts
net (Figure 2b).""! This network contained rhombic channels
with a Co-to-Co cross section of 11.33x15.36 A2 along the ¢
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Figure 2. Schematic representations of a) an eight-connecting cubical unit
and a four-connecting square-planar btec node in 1 (Co=pink, C=white,
O =sea-green, H=yellow), and a view of the scu net. b) a four-connect-
ing tetrahedral unit and a four-connecting btec node in 2, and a view of
the pts net.

axis, in which potassium ions and guest water molecules
reside (Figure S5b).

Both the scu and pts nets belong to the recently identified
28 three-periodic nets with two kinds of vertices and one
kind of link."? These edge-transitive binodal networks are
of great interest and have been attracting increasing atten-
tion relative to the design and synthesis of metal-organic
materials owing to their unique geometric and functional
properties.”® However, 3D networks with mixed connectivi-
ties, such (3,6)-, (4,6)-, and (4,8)-connected frameworks, are
still considered hard to achieve because of their greater geo-
metric limitations."¥ To fulfill the net topologies, the design
strategies used in this study focused on the selection of a
rigid organic ligand with four connectivities, as they provide
a suitable geometry that permits synthesis of the target
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structures. As a result of the nature of cobalt ions, the for-
mation of the tricobalt cluster can be transformed toward
the monocobalt node (from eight- to four-connected nodes).

In conclusion, we demonstrate herein an unique supra-
molecular system and the successful synthesis of two metal—
organic frameworks which possess a rare (4,8)-connected
scu net and a (4,4)-connected pts net, respectively. The
former contains eight-connecting trinuclear cobalt-carboxyl-
ate clusters and square planar organic building units, the
latter has four-connecting tetrahedral metal nodes and
square planar organic linkers. The spontaneous self-adjust-
ment of the K'/Co" concentration ratio offers a strong driv-
ing force that determines the self-assembled frameworks.
We believe that the autonomous structural adaptation of a
self-organizing process may occur in other supramolecular
systems in response to a self-dynamic change in the ratio of
building units under mild conditions. However, such an in-
ternal stimulus is often ignored. Our results highlight an im-
portant concept and help get a better understanding of a
few unique and ambiguous problems with the self-assembly
of MOF materials.

Experimental Section

MOFs 1 and 2: A solution of CoCl,:6 H,O (0.40 mmol) in ethanol (5 mL)
was carefully layered on top of a bilayer solution comprised of a solution
of K btec (0.20 mmol) in water (5 mL) on the bottom and a buffer sol-
vent of THF on the top. It was then allowed to stand at room tempera-
ture for three days, whereupon scarlet needle-like crystals of 1 were form
in 80% yield (based on K btec). After allowing the solution to stand for
further seven days, violet rod-like crystals of 2 appeared in about 1%
(based on K btec). The solid product was washed with deionized water
and ethanol, and dried in air. Elemental analysis caled (%) for 1,
CyH,,Co3K,0,4: C 25.68, H 2.59; found: C 25.24, H, 2.58; for 2, calcd for
C;0H,sCoK,0,5: C 23.40, H 3.14; found: C 23.42, H, 3.35.

Following a similar procedure, but with a different concentration of
CoCl,*6 H,0, CoCl,»6 H,0 (0.16 mmol) and K,btec (0.20 mmol) were in-
troduced into the reaction system. The scarlet crystals of 1 were formed
in the first several days, and then the violet crystals of 2 generated. Be-
cause this supramolecular system is not always totally homogeneous,
both compounds 1 and 2 can be forming for a further period of time.
Yield of 1: 46%, 2: 47% (based on CoCl,,6H,0). Crystal data for 1:
CyH,,C0o3K,046, M,=935.38, monoclinic, C2/m, a=15.737(2), b=
11.901(1), ¢=9.467(1) A, f=11329(1)°, V=1628.5(4) A, Z=2, peyca=
1.908 gecm™, R;=0.0458, wR,=0.1349, GOF=1.160. Crystal data for 2:
CioH;4CoK,05, M,=513.36, monoclinic, C2/c, a=11.335(1), b=
15.368(3), c=11.167(2) A, f=90.95(1)°, V=1945.0(6) A>, Z=4, pea=
1.753 gem™, R,=0.0441, wR,=0.1264, GOF=1.076. CCDC 688763 (1)
and 688764 (2) contain the supplementary crystallographic data for this
paper. These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
Experimental details on dynamic self-assembly of 1 and 2, crystal struc-
ture determination and other physical measurement studies are given in
the Supporting Information.
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